
Computer Science Laboratory, SRI International

An Update on Yices

Bruno Dutertre, SRI International

NASA Langley Formal Methods Workshop

May 2nd, 2008



Computer Science Laboratory, SRI International

Outline

Background

◦ Decision Procedures
◦ SMT Solvers

Yices 1

◦ Supported theories
◦ Applications
◦ Some Issues

Yices 2

◦ New features
◦ Architecture

1



Computer Science Laboratory, SRI International

Decision Procedures

Definition

◦ Algorithm to determine whether a formula φ (in a first-order theory T ) is
satisfiable.

Examples

◦ Congruence closure: for quantifier-free formulas, uninterpreted functions
◦ Simplex methods for quantifier-free linear arithmetic
◦ Cylindrical algebraic decomposition for real closed fields

More useful versions

◦ Decision procedures for combinations of theories:

2.car(x)− 3.cdr(x) = f (cdr(x)) ⇒
g(cons(4.car(x)− 2.f (cdr(x)), y)) = g(cons(6.cdr(x)), y)

◦ Example: the decision procedures of PVS (based on Shostak)

2



Computer Science Laboratory, SRI International

Dealing with Boolean Structure

Many decision procedures (e.g., congruence closure, simplex) work on
conjunctions of literals

They can still be applied to arbitrary formula φ. For example, write φ in DNF:

(a11 ∧ . . . ∧ a1n) ∨ . . . ∨ (am1 ∧ . . . ∧ amp)

Problem: this is highly inefficient

◦ DNF can explode
◦ If several conjuncts share identical literals, we prove the same thing many time:

(f (x, y) 6= f (y, x) ∧ z = 3x + 1 ∧ x = y ∧ z < 0) ∨
(t > g(y) ∧ x = y ∧ z + 3 6 0 ∧ f (x, y) 6= f (y, x)) ∨ . . .

Better approach: use a Boolean SAT solver to enumerate the conjuncts

◦ This is done by tools called Satisfiability Modulo Theory (SMT) Solvers

3



Computer Science Laboratory, SRI International

Naı̈ve SMT Solving

x + y > 0 ∧ (x = z ⇒ z + y = −1) ∧ z > 3t

1) Replace atoms by boolean variables

a 7→ x + y > 0 b 7→ x = z

c 7→ z + y = −1 d 7→ z > 3t

2) Ask for a model of a ∧ (b ⇒ c) ∧ d using a SAT solver

◦ Boolean model: {a, b, c, d}
◦ Convert the model back to arithmetic

x + y > 0 ∧ x = z ∧ z + y = −1 ∧ z > 3t

and check its consistency
Answer: not consistent
Explanation: Arithmetic |= ¬(x + y > 0 ∧ x = z ∧ z + y = −1)

4



Computer Science Laboratory, SRI International

Naı̈ve SMT Solving (continued)

3) Feed the explanation to the SAT solver:

◦ add the clause (¬a ∨ ¬b ∨ ¬c)

4) Get a model of (a ∧ (b ⇒ c) ∧ d) ∧ (¬a ∨ ¬b ∨ ¬c)

◦ Boolean model: {a,¬b, c, d}
◦ Convert back to arithmetic:

x + y > 0 ∧ ¬(x = z) ∧ z + y = −1 ∧ z > 3t

◦ Check consistency: satisfiable

Conclusion: The original formula is satisfiable

5



Computer Science Laboratory, SRI International

Improvements to Naı̈ve SMT Solving

Make it incremental

◦ Don’t wait for a full boolean model to check consistency: interleave boolean
propagation and calls to the theory solver

Theory propagation

◦ Example: given partial model {a, d, c} (i.e., x + y > 0, z + y = −1, z > 3t)
linear arithmetic solver can deduce that b must be false
(since Arithmetic |= x + y > 0 ∧ z + y = −1 ⇒ ¬(x = z))

◦ Theory propagation: detect this and assign ¬b in the SAT solver.

Benefit of these improvements: prune the SAT solver search space

6



Computer Science Laboratory, SRI International

Yices

Yices is SRI’s current SMT solver

◦ Successor of previous systems and prototypes (ICS, Yices 0.1, Simplics)
◦ Follows a long tradition of SRI’s work on decision procedures (Shostak, PVS

decision procedures)

A state-of-the-art SMT solver

◦ Yices won several categories in 2005, 2006, 2007 competition on SMT solving
◦ Uses recent advances in Boolean SAT solving (cf. Chaff, MiniSat, PicoSat)
◦ Can solve very large formulas (100 to 10,000 atoms/variables/terms)
◦ Supports all theories in SMT-LIB and more

7



Computer Science Laboratory, SRI International

Main Features

Supported Theories

◦ Uninterpreted functions
◦ Linear real and integer arithmetic
◦ Extensional arrays
◦ Fixed-size bit-vectors
◦ Scalar types
◦ Recursive datatypes, tuples, records
◦ Quantifiers and lambda expressions

Other Features

◦ Model generation, unsatisfiable cores
◦ Supports incremental assertions: push, pop, retract
◦ Dependent types (similar to PVS)

8



Computer Science Laboratory, SRI International

Applications of Yices

Backend Solver for the SAL Toolset

◦ Support bounded model checking of finite and infinite state systems:
– Check satisfiability of formulas of the form

I(X0) ∧ T (X0, X1) ∧ . . . ∧ T (Xn−1, Xn) ⇒ P (Xn)

where (X, I, T ) encodes a state-transition system and P is a state property:
X: state variables, I: initialization, T : transition relation
- Related applications: k-induction,test-case generation, planning

Integration to PVS

◦ There is a translation from PVS to Yices (in PVS4.0)
◦ Allows to use Yices as an endgame prover from PVS

9



Computer Science Laboratory, SRI International

Other Applications

Static Analysis

◦ Extended static checking (e.g., with the Why system)
◦ Symbolic simulation
◦ Support for invariant generation in hybrid systems (Gulwani and Tiwari, 2008)

10



Computer Science Laboratory, SRI International

Some Limitations of Yices 1

Type System

◦ Dependent subtypes cause problems:
– Type correctness of a formula cannot be established cheaply (if at all)
– Yices behavior on type incorrect formulas is cahotic

API Issues

◦ Yices 1 is mostly intended to be used via the yices executable
◦ Many user want to embed Yices in other system: use it as a library
◦ A Yices library exists but the API is not complete and fragile

Performance Issues

◦ Yices is among the best SMT solvers for arithmetic, arrays, uninterpreted
functions

◦ Not as good for bitvectors and quantifiers

11



Computer Science Laboratory, SRI International

The Next Yices

Yices 2: complete redesign and new implementation

Goals:

◦ Increase flexibility and usability as a library
◦ Simplify the type system to ensure easy type checking
◦ Maintain or improve performance

12



Computer Science Laboratory, SRI International

Yices 2 Formulas

Type Systems

◦ Primitive types: Int, Real, Bool, (Bitvector k)

◦ Uninterpreted and scalar types:
◦ Tuple and function types: (τ1 × . . .× τn) and (τ1 × . . .× τn → τ0)

Subtype Relations

◦ Int < Real

◦ If τ1 < σ1, . . . , τn < σn then (τ1 × . . .× τn) < (σ1 × . . .× σn)

◦ If τ0 < σ0 then (τ1 × . . .× τn → τ0) < (τ1 × . . .× τn → σ0)

Terms

◦ Boolean, rational, and bitvector constants, uninterpreted constants
◦ Non-primitive terms: (t1 = t2) (ite c t1 t2) (not t) (or t1 . . . tn)

(f t1 . . . tn) (∀(x1 : τ1, . . . , xn : τn)t) . . .

Type checking is straightforward

13



Computer Science Laboratory, SRI International

Yices 2 Architecture

Solver

SAT
Solver

CORE
(UF Solver)

Arithmetic

Bitvector

Array/Fun

Solver

Solver

DPLL

14



Computer Science Laboratory, SRI International

Main Components

SAT Solver

◦ Similar to state-of-the-art sat solvers (MiniSat, Picosat)
◦ Extensions for interaction with theory solvers:

– support mapping of boolean variables to atoms
– addition of clauses and boolean variables on the fly
– support for theory propagation and theory conflict
– many configurable parameters controllable via API

Core

◦ Congruence-closure solver for uninterpreted functions and tuples
◦ Ensures consistency between solvers (Nelson-Oppen combination using

interface equalities)
◦ Improvements over Yices 1 core

– More efficient algorithm for equality propagation
– Built-in support for if-then-else and boolean terms

15



Computer Science Laboratory, SRI International

Theory Solvers

Satellite Solvers

◦ Communicate with SAT solver and Core
◦ Each solver deals with a specific theory:

– Arithmetic solver
- The default solver uses the Simplex method
- Optionally, it can be replaced by other solvers (based on the

Floyd-Warshall algorithm) for difference logic
– Bitvector solver

- Bitvector arithmetic: bit-blasting + equality reasoning
– Array/function theory solver

- Extensionality
- Array updates

16



Computer Science Laboratory, SRI International

Improved Performance (UF Benchmarks)

17



Computer Science Laboratory, SRI International

Improved API

Complete API

◦ All functionalities supported by the yice2 solver are also available via a C-API
◦ Supports multiple independent contexts (in addition to push/pop)
◦ Increased flexibility and customization:

– Heuristics parameters can be modified
– The solver architecture is configurable (e.g., which arithmetic solver to use,

whether the Core is needed or not, etc.)
– Better support for model construction

18



Computer Science Laboratory, SRI International

Future Work

Short Term Plans

◦ Yices 2 still under development
◦ Our plan is to enter Yices 2 in this year’s SMT Competition
◦ Release Yices 2 later this year

Future Extensions

◦ Support non-linear arithmetic
◦ Revisit the quantifier matching algorithms and heuristics

19



Computer Science Laboratory, SRI International

Conclusion

SMT solvers enable new approaches to verification:

◦ Bounded model checking requires powerful solvers capable of handling large,
propositionally complex formulas

Yices 1 is one of the most efficient SMT solvers available

With Yices 2 we hope to continue improving:

◦ Easier to use: simpler language, correct typechecking, increased flexibility
◦ Embeddable in other software: improved API and library
◦ Better performance

Visit our website: http://yices.csl.sri.com/

20

http://yices.csl.sri.com/

